МОГучие способности новые приемы анализа больших данных


Сопряженные градиенты - часть 2


Для этого потребовалось определить функции update_alpha(r_i, p_i, A), update_ x(x_i, alpha_i, v_i), update_r(x_i, alpha_i, v_i, A) и update_v(r_i, alpha_ i, v_i, A). Хотя вызовы функций были избыточными (например, update_v() также запускается для обновления ri+1), это позволяло нам вставлять на каждом шаге одну полную строку. Затем перед продолжением вычислений внешний управляющий процесс проверял значение ri. После достижения точки сходимости x* вычисляется элементарным образом.

Наличие метода сопряженных градиентов позволяет реализовать более сложные методы типа SVM. В своей основе метод SVM направлен на максимизацию расстояния между заданным множеством точек и подходящей гиперплоскостью. Это расстояние выражается длиной нормальных векторов

. В большинстве методов в качестве индикаторов c используются целые числа {0, 1}, так что проблема выражается следующим образом:

при условии c´w - b ≥ 0.

Этот метод применяется для решения более общей проблемы функций высокой размерности в приближении рядом Тейлора fx0(x) ≈ f(x0 + df(x)(x - x0) + ½(x - x0)´d2f(x)(x - x0). При хорошем начальном приближении для x* и распространенном предположении о непрерывности f(·) мы знаем, что матрица будет SPD поблизости от x*. Подробности см. в .




Начало  Назад  Вперед



Книжный магазин