Методы добычи данных при построении локальной метрики в системах вывода по прецедентам


Заключение - часть 2


По сравнению с упомянутой ранее зарубежной разработкой (система M2), где используется предварительная кластеризация прецедентов, предлагаемый подход позволяет работать в условиях нефиксированного набора атрибутов, что часто встречается в различных приложениях в ситуациях, когда текущий случай попадает в смешение различных понятий из-за того, что он не полностью описан.

Что касается адаптации решения – предлагаемый метод позволяет сделать эту проблему более формализуемой. Хотя в общем случае проблема адаптации остается зависимой от предметной области, предложенный подход значительно упрощает эту задачу, так как учитывает фоновое знание.

Методы CBR уже применяются во множестве прикладных задач – в медицине, управлении проектами, для анализа и реорганизации среды, разработки товаров массового спроса с учетом предпочтений разных групп потребителей и т. д. Следует ожидать приложений методов CBR к задачам интеллектуального поиска информации, электронной коммерции (предложение товаров, создание виртуальных торговых агентств), планирования поведения в динамических средах, компоновки, конструирования, синтеза программ.

      




Начало  Назад  



Книжный магазин