Методы добычи данных при построении локальной метрики в системах вывода по прецедентам

       

Два подхода к интеграции вывода на основе прецедентов и добычи данных


Тому, что вывод по прецедентам – не только парадигма, но и равноправный партнер добычи данных, когда оба метода могут использовать результаты работы друг друга, до сих пор уделялось небольшое внимание, хотя и было признано важным [Fayyad 96].

Какова мотивация для интеграции двух методов? Оба используются для обработки информации в целях улучшения качества решений, однако, используя интегрированный подход, можно, по-видимому, получить большую отдачу от информации, чем, используя любой из методов в отдельности. Сочетание двух методов позволяет сформулировать и реализовать на практике принципиально новый подход к построению интеллектуальных систем. Можно привести слова математика Сеймура Паперта: "Некоторые из наиболее серьезных шагов в умственном развитии человечества основаны не просто на приобретении новых знаний, а на приобретении новых административных способов использовать то, что каждый уже знает".

Вывод по прецедентам сильно зависит от качества и количества собранных данных, от знаний о проблемной области и способов отбора наиболее релевантных прецедентов. Метод больше подходит для областей, о которых мы имеем недостаточно знаний.

В свою очередь, некоторые алгоритмы добычи данных сами требуют фонового знания, которое может быть получено с помощью прецедентов.

Вывод по прецедентам и добыча данных могут быть интегрированы несколькими способами. В зависимости от этого один из методов можно рассматривать как главный (master), а другой – в качестве вспомогательного (slave).



Содержание раздела