Методы добычи данных при построении локальной метрики в системах вывода по прецедентам


Классификация задач добычи данных


Целью технологии добычи данных является производство нового знания, которое пользователь может в дальнейшем применить для улучшения результатов своей деятельности. Рассмотрим основные виды моделей, которые используются для нахождения нового знания. Результат моделирования – это выявленные отношения в данных. Можно выделить, по крайней мере, семь методов выявления и анализа знаний:

  1. классификация,
  2. регрессия,
  3. кластеризация,
  4. анализ ассоциаций,
  5. прогнозирование временных последовательностей (рядов),
  6. агрегирование (обобщение),
  7. обнаружение отклонений.

Методы 1, 2 и 4 используются, главным образом, для предсказания, в то время как остальные удобны для описания существующих закономерностей в данных.

Вероятно, наиболее распространенной сегодня операцией интеллектуального анализа данных является классификация. С ее помощью выявляются признаки, характеризующие группу, к которой принадлежит тот или иной объект. Это делается посредством анализа уже классифицированных объектов и формулирования некоторого набора правил. Во многих видах бизнеса болезненной проблемой считается потеря постоянных клиентов. В разных сферах (таких, как сотовая телефонная связь, фармацевтический бизнес или деятельность, связанная с кредитными карточками) ее обозначают различными терминами – "переменой моды", "истощением спроса" или "покупательской изменой", – но суть при этом одна. Классификация помогает выявить характеристики "неустойчивых" покупателей и создает модель, способную предсказать, кто именно склонен уйти к другому поставщику. Используя ее, можно определить самые эффективные виды скидок и других выгодных предложений, которые будут наиболее действенны для тех или иных типов покупателей. Благодаря этому удается удержать клиентов, потратив ровно столько денег, сколько необходимо, и не более.

Однажды определенный эффективный классификатор используется для классификации новых записей в базе данных в уже существующие классы, и в этом случае он приобретает характер прогноза.


Начало  Назад  Вперед