Магия сохраняет силу


Простые bcf-украшения - часть 4


Вообще говоря, для c-украшенной таблицы t GMT переводит опорные таблицы в дополнительную таблицу. Для любых двух ограничений r1 и r2, генерирующих одно и то же bcf-украшение α на t, опорные таблицы q являются одними и теми же (Лемма 4.1). Таблица q будет копироваться в две таблицы – в (M1) вместе с r1 и в (M2) вместе с r2. Если эти ограничения обладают полностью различной природой, то в (M1) и (M2) для таблиц q могли бы выбираться разные украшения и разные порядки SIPS. Однако в исходном texp для в дополнительные магические множества выглядят как генерирующие связывания для всех украшений b или c, независимо от природы ограничений. Поскольку мы не различаем типы связывания при принятии решения о вычислении табличного выражения, вычисление будет оптимальным для обоих ограничений.

Функция 3: Паттерн простых bcf-украшений выполняет функцию 3. Если при двух использованиях таблицы в условиях применяются одни и те же аргументы, то и у их опорных магических множеств будут одни и те же аргументы.

7) В разд. 4.3 мы покажим, как можно объединить эти два шага.

8) В запросе с древовидной структурой отсутствуют общие подвыражения.

9) В DAG могут иметься общие подвыражения, но отсутствует рекурсия.

10) Как отмечалось в подразделе 4.1, в некоторых случаях это должно считаться магической таблицей. Это не является проблемой, но для простоты предположим, что у нас всегда имеется дополнительная таблица.




Начало  Назад  Вперед